Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The outbreak of coronavirus disease 2019 (COVID-19) has led to significant challenges for schools and communities during the pandemic, requiring policy makers to ensure both safety and operational feasibility. In this paper, we develop mixed-integer programming models and simulation tools to redesign routes and bus schedules for operating a real university campus bus system during the COVID-19 pandemic. We propose a hub-and-spoke design and utilize real data of student activities to identify hub locations and bus stops to be used in the new routes. To reduce disease transmission via expiratory aerosol, we design new bus routes that are shorter than 15 minutes to travel and operate using at most 50% seat capacity and the same number of buses before the pandemic. We sample a variety of scenarios that cover variations of peak demand, social distancing requirements, and bus breakdowns to demonstrate the system resiliency of the new routes and schedules via simulation. The new bus routes were implemented and used during the academic year 2020–2021 to ensure social distancing and short travel time. Our approach can be generalized to redesign public transit systems with a social distancing requirement to reduce passengers’ infection risk. History: This paper was refereed. This article has been selected for inclusion in the Special Issue on Analytics Remedies to COVID-19. Funding: This work was supported by the National Science Foundation [Grant CMMI-2041745] and the University of Michigan, College of Engineering.more » « less
-
Amidst the COVID-19 pandemic, restaurants become more reliant on no-contact pick-up or delivery ways for serving customers. As a result, they need to make tactical planning decisions such as whether to partner with online platforms, to form their own delivery team, or both. In this paper, we develop an integrated prediction-decision model to analyze the profit of combining the two approaches and to decide the needed number of drivers under stochastic demand. We first use the susceptible-infected-recovered (SIR) model to forecast future infected cases in a given region and then construct an autoregressive-moving-average (ARMA) regression model to predict food-ordering demand. Using predicted demand samples, we formulate a stochastic integer program to optimize food delivery plans. We conduct numerical studies using COVID-19 data and food-ordering demand data collected from local restaurants in Nuevo Leon, Mexico, from April to October 2020, to show results for helping restaurants build contingency plans under rapid market changes. Our method can be used under unexpected demand surges, various infection/vaccination status, and demand patterns. Our results show that a restaurant can benefit from partnering with third-party delivery platforms when (i) the subscription fee is low, (ii) customers can flexibly decide whether to order from platforms or from restaurants directly, (iii) customers require more efficient delivery, (iv) average delivery distance is long, or (v) demand variance is high.more » « less
An official website of the United States government
